NorESM and chemistry

D. Olivié

Norwegian Meteorological Institute

Oslo, November 2013

- Introduction
- Chemical schemes
- Chemical preprocessor
- Coupling
- Emissions
- Task

æ

□ > < 1</p>

- CAM
- CAM-Oslo

æ

@▶ < ≣

- CAM
- CAM-Oslo
- $\bullet \ \ \mathsf{CAM} \otimes \ \mathsf{Chemistry}$

- CAM
- CAM-Oslo
- $\bullet \ \ \mathsf{CAM} \otimes \ \mathsf{Chemistry}$
- CAM-Oslo \otimes Chemistry ?

Overview

Tracers

DMS	SO_2	SO_4	BC	OC	SS	DUST	(H_2O_2)	Total
1	1	6	6	3	3	2	(1)	23

(日) (部) (E) (E) (E)

Overview

Tracers

DMS	SO ₂	SO ₄	BC	OC	SS	DUST	(H ₂ O ₂)	Total
1	1	6	6	3	3	2	(1)	23

• Prescribed oxidant fields: O₃, OH, NO₃, H₂O₂ (H₂O₂ used for relaxation)

《曰》《聞》《臣》《臣》

æ

Overview

Tracers

DMS	SO_2	SO ₄	BC	OC	SS	DUST	(H_2O_2)	Total
1	1	6	6	3	3	2	(1)	23

• Prescribed oxidant fields: O₃, OH, NO₃, H₂O₂ (H₂O₂ used for relaxation)

Some extra information

- MSA is formed, and added to OC aerosol
- Climatology for SOA production (37 Tg/yr) (emitted at the surface)

Overview

Tracers

DMS	SO_2	SO ₄	BC	OC	SS	DUST	(H_2O_2)	Total
1	1	6	6	3	3	2	(1)	23

Prescribed oxidant fields: O₃, OH, NO₃, H₂O₂ (H₂O₂ used for relaxation)

Some extra information

- MSA is formed, and added to OC aerosol
- Climatology for SOA production (37 Tg/yr) (emitted at the surface)

What is lacking?

- Evolution of oxidants since industrial period
- Short time scales possible non-linearities are missed
- Consistency for impact of SLCF: e.g., emissions affecting O₃ versus emissions affecting BC

Chemistry

Where

onresm/models/atm/cam/src/chemistry

æ

A ►

Where

noresm/models/atm/cam/src/chemistry

Three types of subdirectories

- Common: mozart
- Specific for aerosols: bulk_aero, modal_aero
- The actual schemes:

 pp_none
 pp_super_fast_llnl

 pp_super_fast_llnl_mam3
 pp_trop_bam

 pp_trop_ghg
 pp_trop_mam3

 pp_trop_mam7
 pp_trop_mozart

 pp_trop_strat_bam_v1
 pp_waccm_mozart_v1

< 🗇 > < 🖃 >

Chemistry in CESM

Example:

pp_trop_mozart

æ

э

@▶ 《 ≧ ▶

Example:

pp_trop_mozart

Content of directory

- chem_mech.doc chem_mods.F90 mo_adjrxt.F90 mo_indprd.F90 mo_lu_factor.F90 mo_prod_loss.F90 mo_sim_dat.F90 m_spc_id.F90
- chem_mech.in
 m_het_id.F90
 mo_imp_sol.F90
 mo_lin_matrix.F90
 mo_lu_solve.F90
 mo_phtadj.F90
 mo_setrxt.F90
 m_rxt_id.F90

・ 同 ト ・ ヨ ト ・ ヨ

Chemistry: Mozart - tropospheric chemistry

Number of species

• 103 species (including Pb and Rn²²²)

Chemistry: Mozart - tropospheric chemistry

Number of species

• 103 species (including Pb and Rn²²²)

Aerosol species

SO ₄	BC	OC/SOA	SS	DUST	NH_4	$NH_4(NO_3)$
1	2	2/1	4	4	1	1

⊡ ▶ € ▶

Chemistry: Mozart - tropospheric chemistry

Number of species

• 103 species (including Pb and Rn²²²)

Aerosol species

SO_4	BC	OC/SOA	SS	DUST	NH_4	$NH_4(NO_3)$
1	2	2/1	4	4	1	1

Some specification

- Conversion of hydrophoob to hydrophyl OC and BC ($\tau = 1$ to 2 days)
 - OC1 \rightarrow OC2
 - $\bullet \ \mathsf{BC1} \to \mathsf{BC2}$
- Nitrate equilibrium (Metzger et al., 2002)
- Oxidants calculated on-line
- SOA production calculate on-line
- Heterogeneous chemistry: influenced by aerosols surface area
- No MSA taken into account

SOA-production in Mozart

Emissions of SOA precursors [Tg/yr]

		Anthrop.	BB	Biogenic
C10H16	Lumped monoterpenes (α -pinine)			90.7
TOLUENE	Lumped aromatics	31.5	2.8	
BIGALK	Lumped alkenes C>3	77.6	1.4	

SOA-production in Mozart

Emissions of SOA precursors [Tg/yr]

		Anthrop.	BB	Biogenic
C10H16	Lumped monoterpenes (α -pinine)			90.7
TOLUENE	Lumped aromatics	31.5	2.8	
BIGALK	Lumped alkenes C>3	77.6	1.4	

Reactions generating SOA

$C10H16 + O_3$
C10H16 + OH
$C10H16 + NO_{3}$
TOLUENE + OH
TOLUENE + OH
BIGALK + OH

/₽ ► < ∃ ►

SOA-production in Mozart

Emissions of SOA precursors [Tg/yr]

		Anthrop.	BB	Biogenic
C10H16	Lumped monoterpenes (α -pinine)			90.7
TOLUENE	Lumped aromatics	31.5	2.8	
BIGALK	Lumped alkenes C>3	77.6	1.4	

Reactions generating SOA

$C10H16 + O_3$ C10H16 + OH $C10H16 + NO_3$
TOLUENE + OH TOLUENE + OH BIGALK + OH

Current SOA production in Mozart

- 10 Tg/yr
- No SOA production from isoprene

CAM combined with Mozart

Standard

∢母▶ ∢ ≣▶

э

CAM combined with Mozart

Standard

CAM-Oslo combined with Mozart

Be carefull about

- Naming: SO₂, DMS, SO₄ both in CAM-Oslo as in Mozart
- OFF-LINE CAM-Oslo influenced by radiative active chemical species: O₃, CH₄
- Deposition of radiative active species: BC, DUST

Emissions in CAM-Oslo

Emitted species in CAM-Oslo

BC/OC/SO₂

Туре	Volcanic	Biomass burning	Anthropogenic
# layers	9	8	2

- DMS (only at surface)
- OC from the ocean
- SS (on-line: depending on wind speed)
- DUST

Emissions in CAM-Oslo

Emitted species in CAM-Oslo

BC/OC/SO₂

Туре	Volcanic	Biomass burning	Anthropogenic
# layers	9	8	2

- DMS (only at surface)
- OC from the ocean
- SS (on-line: depending on wind speed)
- DUST

Some specifications

- Emissions files explicitly named in emissions.F90
- Works mainly with decadal data for fossil fuel and bb emissions
- For monthly varying emissions: applied constant between begin/end of month
- Units of off-line emissions: kg/m²/s

Emissions in CAM-Oslo

Emitted species in CAM-Oslo

BC/OC/SO₂

Туре	Volcanic	Biomass burning	Anthropogenic
# layers	9	8	2

- DMS (only at surface)
- OC from the ocean
- SS (on-line: depending on wind speed)
- DUST

Some specifications

- Emissions files explicitly named in emissions.F90
- Works mainly with decadal data for fossil fuel and bb emissions
- For monthly varying emissions: applied constant between begin/end of month
- Units of off-line emissions: kg/m²/s

Stratosphere

Stratospheric sulphate aerosol is prescribed.

Described in the (atmospheric) namelist

• Easy to use/change emission data set

Described in the (atmospheric) namelist

• Easy to use/change emission data set

Distinction between 2D and 3D emissions

- 2D (molecules/cm²/s) :srf_emis_specifier
- 3D (molecules/cm³/s): ext_frc_specifier (possibly change preproccessing)

Described in the (atmospheric) namelist

Easy to use/change emission data set

Distinction between 2D and 3D emissions

- 2D (molecules/cm²/s) :srf_emis_specifier
- 3D (molecules/cm³/s): ext_frc_specifier (possibly change preproccessing)

Time resolution of emissions srf_emis_type (ext_frc_type) (in namelist) CYCLICAL (needs srf_emis_cycle_yr) SERIAL

INTERP_MISSING MONTHS (easy for transient decadal emissions)

FIXED (needs srf_emis_fixed_ymd)

Described in the (atmospheric) namelist

Easy to use/change emission data set

Distinction between 2D and 3D emissions

- 2D (molecules/cm²/s) :srf_emis_specifier
- 3D (molecules/cm³/s): ext_frc_specifier (possibly change preproccessing)

Time resolution of emissions srf_emis_type (ext_frc_type) (in namelist) CYCLICAL (needs srf_emis_cycle_yr)

SERIAL

```
INTERP_MISSING MONTHS ( easy for transient decadal emissions)
```

FIXED (needs srf_emis_fixed_ymd)

Application of monthly varying emissions

- Interpolated between middle of months
- Disadvantage: simulations starting 1 January, ending 31 December

```
In the compset (where you define the case)
CAM_CONFIG_OPTS=" -phys cam4
        -cam_oslo aeronline
        ...
        -chem trop_mozart
        -usr_mech_infile <description file>"
```

```
In the compset (where you define the case)
CAM_CONFIG_OPTS=" -phys cam4
        -cam_oslo aeronline
        ...
        -chem trop_mozart
        -usr_mech_infile <description file>"
```

Examples of <description file>

- oresm/models/atm/cam/chem_proc/inputs/ trop_mozart_mech.in
- noresm/models/atm/cam/chem_proc/inputs/ super_fast_LLNL.lut.fixed_ch4.isoprene+O3.in

```
In the compset (where you define the case)
CAM_CONFIG_OPTS=" -phys cam4
        -cam_oslo aeronline
        ...
        -chem trop_mozart
        -usr_mech_infile <description file>"
```

Examples of <description file>

- oresm/models/atm/cam/chem_proc/inputs/ trop_mozart_mech.in
- noresm/models/atm/cam/chem_proc/inputs/ super_fast_LLNL.lut.fixed_ch4.isoprene+O3.in

Results of pre-processing

cases/<expname>/Buildconf/camconf/chem_proc/source

The file describing the chemical scheme contains:

The file describing the chemical scheme contains:

SPECIES

Solution S04, DMS -> CH3SCH3, CB1 -> C, MSA -> CH3SO3H, MPSOA -> C12, MPMSA -> CH3SO3H, MPSO4GA -> S04, ... Fixed ... Col-int ...

The file describing the chemical scheme contains:

SPECIES

Solution S04, DMS -> CH3SCH3, CB1 -> C, MSA -> CH3SO3H, MPSOA -> C12, MPMSA -> CH3SO3H, MPSO4GA -> S04, ... Fixed ... Col-int ... SOLUTION CLASSES

Explicit CH4, N2O, CO, Rn, Pb, H2 Implicit (all others)

The file describing the chemical scheme contains:

SPECIES

Solution S04, DMS \rightarrow CH3SCH3, CB1 \rightarrow C, MSA \rightarrow CH3SO3H, MPSOA \rightarrow C12, MPMSA \rightarrow CH3SO3H, MPSO4GA \rightarrow SO4, ... Fixed ... Col-int ... SOLUTION CLASSES Explicit CH4, N2O, CO, Rn, Pb, H2 Implicit (all others) CHEMISTRY Photolysis ... Reactions Heterogeneous (wet deposition) Ext Forcing (3D sources from file, or from lightning parametrization)

Rationale

• Everything is introduced by CPP-keys

- - E

Rationale

Everything is introduced by CPP-keys

The same code can give

- CAM-Oslo (original) parallel with Mozart (original)
- CAM-Oslo combined with Mozart-chemistry

Sulphur cycle

- Units of DMS, SO₂, SO₄ in CAM-Oslo: converted from [S] to real molecular mass
- Introduce MSA tracer, and formation reaction in Mozart
- Aqueous SO₄ and gas-phase H_2SO_4 formation: use H_2SO_4 , SO₄, and MSA production rates from Mozart
- DMS, SO₂ emissions have are prescribed in Mozart

A > 4

Sulphur cycle

- Units of DMS, SO₂, SO₄ in CAM-Oslo: converted from [S] to real molecular mass
- Introduce MSA tracer, and formation reaction in Mozart
- Aqueous SO₄ and gas-phase H_2SO_4 formation: use H_2SO_4 , SO₄, and MSA production rates from Mozart
- DMS, SO₂ emissions have are prescribed in Mozart

SOA-production

- SOA production rate from Mozart
- Included production from isoprene

Sulphur cycle

- Units of DMS, SO₂, SO₄ in CAM-Oslo: converted from [S] to real molecular mass
- Introduce MSA tracer, and formation reaction in Mozart
- Aqueous SO₄ and gas-phase H_2SO_4 formation: use H_2SO_4 , SO₄, and MSA production rates from Mozart
- DMS, SO₂ emissions have are prescribed in Mozart

SOA-production

- SOA production rate from Mozart
- Included production from isoprene

Heterogeneous chemistry surface area

- Use CAM-Oslo aerosols (externally and internally mixed)
- Hygroscopic growth: take into account internal mixture

Sulphur cycle

- Units of DMS, SO₂, SO₄ in CAM-Oslo: converted from [S] to real molecular mass
- Introduce MSA tracer, and formation reaction in Mozart
- \bullet Aqueous SO4 and gas-phase H_2SO_4 formation: use $H_2SO_4,\,SO_4,\,and\,MSA$ production rates from Mozart
- DMS, SO₂ emissions have are prescribed in Mozart

SOA-production

- SOA production rate from Mozart
- Included production from isoprene

Heterogeneous chemistry surface area

- Use CAM-Oslo aerosols (externally and internally mixed)
- Hygroscopic growth: take into account internal mixture

CAM-Oslo SO₄ used in nitrate equilibrium calculation

Further points of interest

Emissions/speciation

- ACCMIP, RCP45, RCP85: readily available for Mozart
- RCP26, RCP60: possible

Further points of interest

Emissions/speciation

- ACCMIP, RCP45, RCP85: readily available for Mozart
- RCP26, RCP60: possible

Development

- Coupling with the land model (NO, CO, VOC) and ocean model (DMS)
- There exists more elaborate descriptions of SOA formation

Task 1

• Create/test a case: CAM-Oslo parallel with super_fast_chemistry

▲□ ▶ ▲ 目

æ

Task 1

Create/test a case: CAM-Oslo parallel with super_fast_chemistry

Task 2

 Create/test a case: CAM-Oslo parallel with super_fast_chemistry with modified reaction constant

▲ 同 ▶ → 三 ▶

э

æ

Hints

Task 1

- Create/test a case: CAM-Oslo parallel with super_fast_chemistry
- (Hint: look at B_1850_CN_CHEM case, and N_1850_AEROSLO case)
- (Hint: think about double-used names as SO₄ modify aerosoldef.F90, calccol.F90, cam_diagnostics.F90 in SourceMods/src.cam)

Hints

Task 1

- Create/test a case: CAM-Oslo parallel with super_fast_chemistry
- (Hint: look at B_1850_CN_CHEM case, and N_1850_AEROSLO case)
- (Hint: think about double-used names as SO₄ modify aerosoldef.F90, calccol.F90, cam_diagnostics.F90 in SourceMods/src.cam)

Task 2

- Create/test a case: CAM-Oslo parallel with super_fast_chemistry with modified reaction constant
- (Hint : look at into noresm/models/atm/cam/chem_proc/inputs at super_fast_LLNL.lut.fixed_ch4.isoprene+03.in)